

# **Installation Manual**

**Energy Storage System (ESS)** 

**SMILE-S6-HV** 

**SMILE-S5-HV** 

**V01** 



#### **IMPRINT**

#### Germany

Alpha ESS Europe GmbH

Tel.: +49 (0)6103 459 160-1

E-mail: europe@alpha-ess.de

Web: www.alpha-ess.de

Add: Paul-Ehrlich-Straße 1a 63225 Langen

#### China

Alpha ESS Co., Ltd.

Tel.: +86 (0)513 806 868 91 E-mail: info@alpha-ess.com Web: www.alpha-ess.com

Add: JiuHua Road 888, High-Tech Industrial Development Zone

226300 Nantong City, Jiangsu Province

#### **Australia**

Alpha ESS Australia Pty. Ltd.

Tel.: +61 1300 968 933

E-mail: australia@alpha-ess.com Web: www.alpha-ess.com.au

Add: Suite 1, Level 1, 530 Botany Road, Alexandria, NSW, 2015

#### Italy

Alpha ESS Italy S.r.l.

Tel.: +39 (0)599 239 50 E-mail: info@alpha-ess.it

Web: https://it.alpha-ess.com/

Add: Via Loda,17-41013 Castelfranco Emilia(MO)

June 18, 2021



### **Copyright Statement**

This manual is under the copyright of Alpha ESS Co., Ltd. with all rights reserved. Please keep the manual properly and operate in strict accordance with all safety and operating instructions in this manual. Please do not operate the product before reading through the manual.

### **Version Information**

| Version | Date       | Content |
|---------|------------|---------|
| V01     | 08.07.2021 | New     |
|         |            |         |
|         |            |         |
|         |            |         |
|         |            |         |
|         |            |         |
|         |            |         |
|         |            |         |
|         |            |         |
|         |            |         |
|         |            |         |



# Content

| IMPRINT                                           | 2   |
|---------------------------------------------------|-----|
| Copyright Statement                               | 3   |
| Version Information                               | 3   |
| Content                                           | 4   |
| 1. Information on this Document                   | 6   |
| 1.1 Content and Structure of this Document        | 6   |
| 1.2 Target Group                                  | 6   |
| 1.3 Levels of Warning Messages                    | 6   |
| 1.4 Nomenclature                                  | 7   |
| 2. Safety                                         | 8   |
| 2.1 Intended Use of the Inverter                  | 8   |
| 2.2 Safety Precaution for Battery Pack            | 9   |
| 2.2.1 General Safety Precautions                  | 9   |
| 2.2.2 Response to Emergency Situations            | 9   |
| 2.3 Important Safety Instructions                 | 11  |
| 2.4 Symbols on the Label                          | 14  |
| 3. Product Introduction and Application Scenarios | 16  |
| 3.1 Inverter Description                          | 16  |
| 3.2 Battery Pack Description                      | 17  |
| 3.3 Application Scenarios                         | 19  |
| 4. Storage                                        | 20  |
| 4.1 Inverter Storage                              | 20  |
| 4.2 Battery Storage                               | 20  |
| 5. Unpacking                                      | 22  |
| 5.1 Checking the Outer Packing                    | 22  |
| 5.2 Scope of Delivery                             | 22  |
| 6. Mounting                                       | 23  |
| 6.1 Requirements for Mounting                     | 23  |
| 6.2 Preparing Tools and Instruments               | 26  |
| 6.3 Mounting the 8.2PH and Inverter               | 27  |
| 6.4 Mounting the 5PH and Inverter错误!未定义-          | 书签。 |
|                                                   |     |



| 6.5 Mounting the WiFi Module                      | 32       |
|---------------------------------------------------|----------|
| 7. Electrical Connection                          | 33       |
| 7.1 Overview of the Connection Area               | 34       |
| 7.2 Preparing Cables                              | 35       |
| 7.3 Connecting Additional Grounding               | 37       |
| 7.4 AC Connection                                 | 38       |
| 7.5 PV Connection                                 | 50       |
| 7.6 Battery Power Connection                      | 52       |
| 7.7 Battery Communication Connection              | 50       |
| 7.8 Battery Pack Expansion Connection             | 53       |
| 8. WiFi Setting                                   | 55       |
| 8.1 Download and Install APP                      | 55       |
| 8.2 Overview of Functions for Installer Account   | 56       |
| 8.3 WiFi Module Setting                           | 56       |
| 9. Commissioning                                  | 58       |
| 9.1 Checking Before Power-On                      | 60       |
| 9.2 Check the Running State                       | 61       |
| 9.3 Powering Off the Product                      | 62       |
| 10. Maintenance and Troubleshooting               | 63       |
| 10.1 Routine Maintenance                          | 63       |
| 10.2 Troubleshooting                              | 64       |
| 11. Uninstallation & Return                       | 69       |
| 11.1 Removing the Product                         | 69       |
| 11.2 Packing the Product                          | 69       |
| 11.3 Disposing of the Product                     | 69       |
| 12. Specification                                 | 70       |
| 12.1 Datasheet of Hybrid Inverter SMILE-S6-HV-INV |          |
| 12.2 Datasheet of Battery Pack SMILE-BAT-8.2PH    | 72       |
| 12.3 Datasheet of Battery Pack SMILE-BAT-5PH错     | 误!未定义书签。 |
| Appendix                                          | 73       |
| Communication Connection Figure                   |          |



#### 1. Information on this Document

#### 1.1 Content and Structure of this Document

This document is valid for product of SMILE-S6-HV or SMILE-S5-HV which include inverter SMILE-S6-HV-INV or SMILE-S5-HV-INV&, battery pack SMILE-BAT-8.2PH. (SMILE-S6-HV/SMILE-S6-HV-INV is 6kW and SMILE-S5-HV/SMILE-S5-HV-INV is 5kW. This manual will use SMILE-S6-HV/SMILE-S5-HV-INV to represent two models.) This document describes the mounting, installation, commissioning, configuration, operation, troubleshooting and decommissioning of the product as well as the operation of the product user interface.

Observe all documentation that accompanies the product, keep them in a convenient place and available at all times.

Illustrations in this document are reduced to the essential information and may deviate from the real product.

### 1.2 Target Group

This document is intended for qualified persons and end users. Only qualified persons are allowed to perform the activities marked in this document with a warning symbol. Tasks that do not require any particular qualification are not marked and can also be performed by end users. Qualified persons must have the following skills:

- Knowledge of how an inverter works and operates.
- Training in how to deal with the dangers and risks associated with installing and using electrical devices, batteries and systems.
- Training in the installation and commissioning of electrical devices and systems
- Knowledge of the applicable standards and directives.
- Knowledge of and compliance with this document, including all safety precautions.
- Knowledge of and compliance with the documents of the battery manufacturer, including all safety precautions.

### 1.3 Levels of Warning Messages

The following levels of warning messages may occur when handling the product.



DANGER indicates a hazardous situation which, if not avoided, will result in death or serious injury.

Λ



WARNING indicates a hazardous situation which, if not avoided, could result in death or serious injury.

# **ACAUTION**

CAUTION indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

### **NOTICE**

NOTICE indicates a situation which, if not avoided, can result in property dam age.



INFORMATION provides tips which are valuable for the optimal installation and operation of the product.

### 1.4 Nomenclature

| Complete designation                     | Designation in this document |  |
|------------------------------------------|------------------------------|--|
| SMILE-BAT-8.2PH (INDOOR)                 | SMILE-BAT-8.2PH (INDOOR)     |  |
| SMILE-BAT-8.2PH (OUTDOOR)                | SMILE-BAT-8.2PH (OUTDOOR)    |  |
| SMILE-S6-HV-INV (INDOOR)                 | Inverter (INDOOR)            |  |
| SMILE-S6-HV-INV (OUTDOOR)                | Inverter (OUTDOOR)           |  |
| SMILE-S6-HV-INV with SMILE-BAT-<br>8.2PH | Product                      |  |



### 2. Safety

#### 2.1 Intended Use of the Inverter

The inverter, the battery pack, the energy meters make up a system for optimization of self-consumption in a household. The inverter is equipped with two MPP trackers and converts the direct current from the PV array into grid-compliant single-phase current and feeds it into the utility grid. The battery pack is used for the intermediate storage of the energy.

The product is suitable for indoor and outdoor use.

The product must only be operated with PV arrays of protection class II in accordance with IEC 61730, application class A. The PV modules must be compatible with this product.

PV modules with a high capacity to ground must only be used if their coupling capacity does not exceed 1.0 µF.

All components must remain within their permitted operating ranges at all times. Use this product only in accordance with the information provided in the enclosed documentation and with the locally applicable standards and directives. Any other application may cause personal injury or property damage.

Alterations to the product, e.g. changes or modifications, are only permitted with the express written permission of AlphaESS. Unauthorized alterations will void guarantee and warranty claims. AlphaESS shall not be held liable for any damage caused by such changes.

Any use of the product other than that described in the Intended Use section does not qualify as appropriate.

The enclosed documentation is an integral part of this product. Keep the documentation in a convenient place for future reference and observe all instructions contained therein.

The type label must remain permanently attached to the product.



### 2.2 Safety Precaution for Battery Pack

### 2.2.1 General Safety Precautions

Overvoltage or wrong wiring can damage the battery pack and cause deflagration, which can be extremely dangerous.

All types of breakdown of the battery may lead to a leakage of electrolyte or flammable gas.

Battery pack is not user serviceable. High voltage is present in the device.

Read the label with Warning Symbols and Precautions, which is on the right side of the battery pack.

Do not connect any AC conductors or PV conductors which should be only connected to the inverter directly to the battery pack.

Do not charge or discharge damaged battery.

Do not damage the battery pack in such ways as dropping, deforming, impacting, cutting or penetrating with a sharp object. It may cause a leakage of electrolyte or fire.

Do not expose battery to open flame.

Do not connect with lead-acid battery.

### 2.2.2 Response to Emergency Situations

The battery pack comprises multiple batteries that are designed to prevent hazards resulting from failures. However, AlphaESS cannot guarantee their absolute safety.

 If a user happens to be exposed to internal materials of the battery cell due to damage on the outer casing, the following actions are recommended.
 Inhalation: Leave the contaminated area immediately and seek medical attention.
 Eye contact: Rinse eyes with running water for 15 minutes and seek medical attention.

Contact with skin: Wash the contacted area with soap thoroughly and seek medical attention.

Ingestion: Induce vomiting and seek medical attention.

If a fire breaks out in the place where the battery pack is installed, perform the following countermeasures:

- Fire extinguishing media.
  - Respirator is not required during normal operations.
  - Use FM-200 or CO<sub>2</sub> extinguisher for battery fire.

Use an ABC fire extinguisher, if the fire is not from battery and not spread to it yet.

- Firefighting instructions
  - 1. If fire occurs when charging batteries, if it is safe to do so, disconnect the battery pack circuit breaker to shut off the power to charge.
  - 2. If the battery pack is not on fire yet, extinguish the fire before the battery pack catches fire.



3. If the battery pack is on fire, do not try to extinguish but evacuate people immediately

## 

There may be a possible explosion when batteries are heated above 150°C. When the battery pack is burning, it leaks poisonous gases. Do not approach.

Effective ways to deal with accidents

On land: Place damaged battery into a segregated place and call local fire department or service engineer.

In water: Stay out of the water and don't touch anything if any part of the battery, inverter, or wiring is submerged.

Do not use submerged battery again and contact the service engineer.



### 2.3 Important Safety Instructions

This section contains safety precautions that must be observed at all times when working on or with the product.

To prevent personal injury and property damage and to ensure long-term operation of the product, read this section carefully and follow all safety precautions at all times.

# **DANGER**

# Danger to life due to electric shock when live components or cables are touched.

High voltages are present in the conductive components or cables of the product. Touching live parts and cables results in death or lethal injuries due to electric shock.

- Do not touch non-insulated parts or cables.
- Disconnect the product from voltage sources and make sure it cannot be reconnected before working on the inverter or the battery pack.
- After disconnection, wait 5 minutes until the capacitors have discharged.
- Do not open the product.
- Wear suitable personal protective equipment for all work on the product.

# **ADANGER**

# Danger to life due to electric shock when live components or DC cables are touched.

When exposed to sunlight, the PV array generates high DC voltage which is present in the DC conductors. Touching the live DC cables results in death or lethal injuries due to electric shock.

- Disconnect the inverter from voltage sources and make sure it cannot be reconnected before working on the device.
- Do not touch non-insulated parts or cables.
- Do not disconnect the DC connectors under load.
- Wear suitable personal protective equipment for all work on the inverter.

### **ADANGER**

# Danger to life due to electric shock from touching an ungrounded PV module or array frame.

Touching ungrounded PV modules or array frames results in death or lethal injuries due to electric shock.

 Connect and ground the frame of the PV modules, the array frame and the electrically conductive surfaces so that there is continuous conduction. Observe the applicable local regulations.



# **ADANGER**

# Danger to life due to electric shock when touching live system components in case of a ground fault.

If a ground fault occurs, parts of the system may still be live. Touching live parts and cables results in death or lethal injuries due to electric shock.

- Disconnect the product from voltage sources and make sure it cannot be reconnected before working on the device.
- Touch the cables of the PV array on the insulation only.
- Do not touch any parts of the substructure or frame of the PV array.
- Do not connect PV strings with ground faults to the inverter.

# **ADANGER**

### Danger to life due to high voltages on the battery pack.

Lethal voltage is present at the pin connector for the power cable. Reaching into the pin connector for the power cable can result in lethal electric shock.

- Do not open the battery pack.
- Do not wipe over the battery pack with a damp cloth.
- Leave the protective caps on the pin connectors for the batteries power connection until the inverter cables are connected to the battery pack.
- Disconnect the product from voltage sources and make sure it cannot be reconnected before working on the inverter or the battery pack.

# **WARNING**

### Risk of chemical burns from electrolyte or toxic gases

During normal operation, no electrolyte can leak from the battery pack and no toxic gases can form. Despite careful construction, if the battery pack is damaged or a fault occurs, it is possible that electrolyte may be leaked or toxic gases formed.

- Store the battery pack in a cool and dry place.
- Do not drop the battery pack or damage it with sharp objects.
- Only set the battery pack down on its back or its bottom, i.e., on the side with the mounting lugs.
- Do not open the battery pack.
- Do not install or operate the battery pack in potentially explosive atmosphere or areas of high humidity.
- If moisture has penetrated the battery pack (e.g. due to a damaged enclosure), do not install or operate the battery pack.
- In case of contact with electrolyte, rinse the affected areas immediately with water and consult a doctor without delay.



# \I\

### CAUTION

### Risk of burns due to hot heatsink and housing

The heatsink and housing can get hot during operation.

• During operation, do not touch any parts other than the cover of the inverter.

### **NOTICE**

#### Damage to the inverter due to electrostatic discharge

- Touching electronic components can cause damage to or destroy the inverter through electrostatic discharge.
- Ground yourself before touching any component.

### **NOTICE**

### Damage due to cleaning agents

The use of cleaning agents may cause damage to the product and its components.

• Clean the product and all its components only with a cloth moistened with clear water.



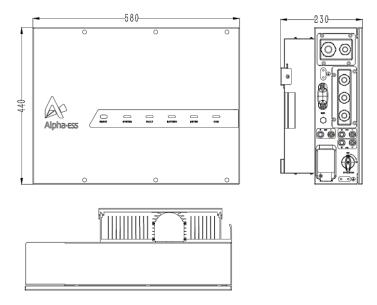
# 2.4 Symbols on the Label

Symbols on the type label of the inverter

| Symbol                    | Explanation                                                                                                                                                                                                                                                                                                          |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\triangle$               | Beware of a danger zone This symbol indicates that the product must be additionally grounded if additional grounding or equipotential bonding is required at the installation site.                                                                                                                                  |
| <b>A</b>                  | Beware of electrical voltage The product operates at high voltages.                                                                                                                                                                                                                                                  |
|                           | Beware of hot surface The product can get hot during operation.                                                                                                                                                                                                                                                      |
| 5min.                     | Danger to life due to high voltages in the inverter, observe a waiting time of 5 minutes High voltages that can cause lethal electric shocks are present in the live components of the inverter. Prior to performing any work on the inverter, disconnect it from all voltage sources as described in this document. |
|                           | WEEE designation Do not dispose of the product together with the household waste but in accordance with the disposal regulations for electronic waste applicable at the installation site.                                                                                                                           |
| Πi                        | Observe the documentation                                                                                                                                                                                                                                                                                            |
| TÜVRheinland<br>CERTIFIED | Certified safety The product is TUV-tested and complies with the requirements of the EU Equipment and Product Safety Act.                                                                                                                                                                                            |
| CE                        | CE marking The product complies with the requirements of the applicable EU directives.                                                                                                                                                                                                                               |
|                           | RCM (Regulatory Compliance Mark) The product complies with the requirements of the applicable Australian standards.                                                                                                                                                                                                  |



### Symbols on the type label and warning label of the battery pack


| Symbol   | Explanation                                                                                                                                                                         |  |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <u> </u> | Beware of a danger zone This symbol indicates that the product must be additionally grounded if additional grounding or equipotential bonding is required at the installation site. |  |  |
| <u>F</u> | Beware of electrical voltage The product operates at high voltages.                                                                                                                 |  |  |
|          | Risk of chemical burns                                                                                                                                                              |  |  |
|          | Risk of explosion                                                                                                                                                                   |  |  |
|          | Observe the documentation                                                                                                                                                           |  |  |
|          | Risk of electrolyte leakage                                                                                                                                                         |  |  |
| CE       | CE marking The product complies with the requirements of the applicable EU directives.                                                                                              |  |  |
|          | Refer to the instruction for operation                                                                                                                                              |  |  |
|          | Use eye protection                                                                                                                                                                  |  |  |
|          | Fire, naked light and smoking prohibited                                                                                                                                            |  |  |
|          | No nearing                                                                                                                                                                          |  |  |
| Li-lon   | Do not dispose of the battery pack together with the household waste but in accordance with the locally applicable disposal regulations for batteries                               |  |  |
|          | Recycling code                                                                                                                                                                      |  |  |
| UN38.3   | Marking for transport of dangerous goods                                                                                                                                            |  |  |
| 01400.0  | The product passes the certifications of the UN38.3                                                                                                                                 |  |  |



## 3. Product Introduction and Application Scenarios

## 3.1 Inverter Description

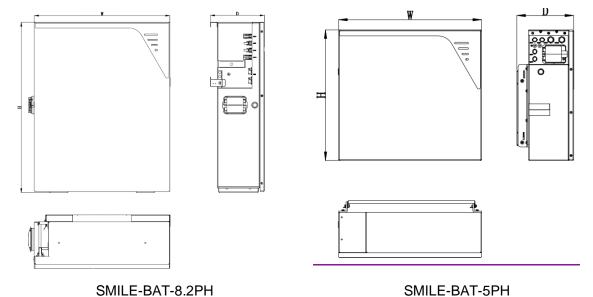
Inverter appearance and dimensions



**Inverter LED Signals** 



Five LED indicators and one reset button are provided on the display panel. These LED indicators provide information about the operational status of the system. The external communication devices will be restarted with the inverter if you long press the reset button for 5s.


| LED Indictor | Status | Explanation                                              |  |  |
|--------------|--------|----------------------------------------------------------|--|--|
| SYSTEM       |        | The system works normally.                               |  |  |
| 0.0.1        |        | The system is not operating.                             |  |  |
| FAULT        |        | A fault of the system has occurred.                      |  |  |
| 17.021       |        | No fault                                                 |  |  |
|              |        | The battery pack works normally.                         |  |  |
| BATTERY      | шшш    | Battery communication exists but is not working normally |  |  |
|              |        | Battery communication loss exists                        |  |  |



|       |       | Meter communication works normally.                                        |  |  |
|-------|-------|----------------------------------------------------------------------------|--|--|
| METER |       | Meter communication lost.                                                  |  |  |
| WETER |       | Grid Meter communication loss in AC or Hybrid mode, flash once every 500ms |  |  |
|       | шшшшш | PV Meter communication lost in AC or Hybrid mode, flash once every 1s.     |  |  |
|       |       | Normal communication with the server                                       |  |  |
|       |       | Disconnect to the server                                                   |  |  |
| СОМ   | шш    | Normal communication with the APP, flash once every 4s.                    |  |  |
|       | шшш   | Connected to the server but not logged in, flash once every 2s             |  |  |
|       | шшшшш | Connected to the router, flash once every 1s                               |  |  |
|       |       | Connected to the WiFi module, flash once every 500 ms                      |  |  |

# 3.2 Battery Pack Description

Battery pack appearance and dimensions



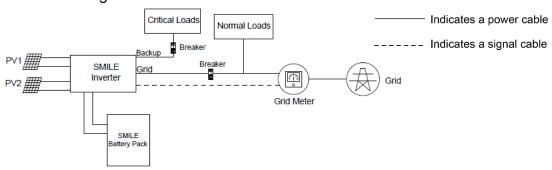
Battery pack appearance and dimensions

| Battery Pack              | Dimension (W*H*D) |  |
|---------------------------|-------------------|--|
| SMILE-BAT-8.2PH (OUTDOOR) | 580*820*230 mm    |  |
| SMILE-BAT-8.2PH (INDOOR)  | 580*730*230 mm    |  |

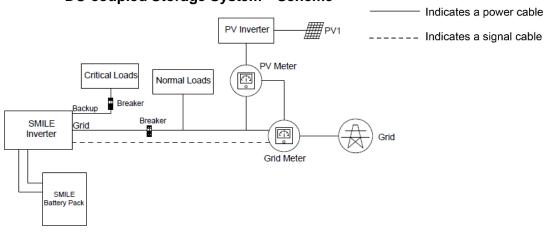
Four LED indicators are provided on the display panel.



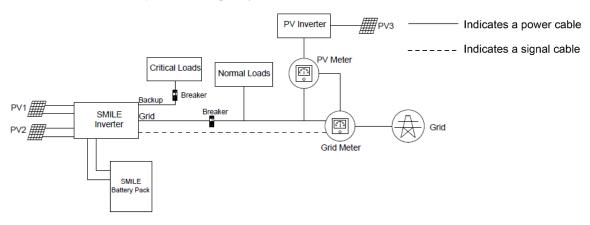
Different colors represent different states, green for SOC state, yellow for protection state, red for error state.


The LED indicators provide information about the SOC operational status of the battery pack.

| LED Indicator SOC I                          |     | Description                                                                                                                                                                                                                                        |  |
|----------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                              | 000 | SOC≤5% The first line of the LED indicator flashes every 10s.                                                                                                                                                                                      |  |
|                                              |     | 5% <soc≤30% 30%="" 3s.<="" always="" and="" battery="" being="" charged,="" every="" first="" flash="" indicator="" is="" led="" less="" line="" of="" on.="" soc="" td="" than="" the="" when="" will=""></soc≤30%>                               |  |
| Standby:<br>Green LEDs flash<br>every second |     | 30% <soc≤55% 30%="" 3s.<="" 55%,="" always="" and="" are="" battery="" being="" between="" charged="" every="" first="" flash="" indicator="" is="" led="" line="" of="" on.="" second="" soc="" td="" the="" when="" will=""></soc≤55%>           |  |
|                                              |     | 55% <soc≤80% 3s.<="" 55%="" 80%,="" always="" and="" are="" battery="" being="" between="" charged="" every="" first,="" flash="" indicator="" is="" led="" line="" of="" on.="" second="" soc="" td="" the="" third="" when="" will=""></soc≤80%> |  |
|                                              |     | 80% ≤ SOC ≤ 100%  All the LED indicators are always on.  When the battery is being charged and the SOC is between 80% and 100%, the fourth line of the LED indicator will flash every 3s.                                                          |  |




### 3.3 Application Scenarios


AlphaESS SMILE-S6-HV system (include SMILE-S6-HV-INV and SMILE-BAT-8.2PH) can be applied in DC-coupled systems (mostly new installation), AC-coupled systems (mostly retrofit) and Hybrid-coupled systems (mostly retrofit, and PV capacity increase), as the following scheme show:



#### DC-coupled Storage System - Scheme



#### AC-coupled Storage System - Scheme



**Hybrid-coupled Storage System - Scheme** 

\_\_\_\_



### 4. Storage

### 4.1 Inverter Storage

The following requirements should be met if the inverter is not put into use directly:

- 1. Do not unpack the inverter.
- 2. Keep the storage temperature at -40~70°C and the humidity at 5%~95% RH.
- 3. The inverter should be stored in a clean and dry place and be protected from dust and water vapor corrosion.
- 4. A maximum of six inverters can be stacked. To avoid personal injury or device damage, stack inverters with caution to prevent them from falling over.
- 5. During the storage period, check the inverter periodically. (It is recommended that the check is performed every three months.) Replace the packing materials that are damaged by insects or rodents in a timely manner.
- 6. If the inverters have been stored for more than two years, it must be checked and tested by professionals before being put into use.

### 4.2 Battery Storage

The following requirements should be met if the battery pack is not put into use directly:

- 1. Place batteries according to the signs on the packing case during storage. Do not put batteries upside down or sidelong.
- 2. Stack battery packing cases by complying with the stacking requirements on the external package.
- 3. Store the battery pack out of reach of children and animals.
- 4. Store the battery pack where it should be minimal dust and dirt in the area.
- 5. Handle batteries with caution to avoid damage.
- 6. The storage environment requirements are as follows:
- Ambient temperature: -10~55°C, recommended storage temperature: 15~30°C
- Relative humidity: 15%~ 85%
- Place batteries in a dry and clean place with proper ventilation.
- Place batteries in a place that is away from corrosive organic solvents and gases.
- Keep batteries away from direct sunlight.
- Keep batteries at least 2 m away from heat sources.
- 7. The batteries in storage must be disconnected from external devices. The indicators (if any) on the batteries should be off.
- 8. Batteries should be delivered based on the "first in, first out" rule.
- 9. The warehouse keeper should collect battery storage information every month and periodically report the battery inventory information to the planning department. The batteries that have been stored for nearly 6 months should be recharged timely.
- 10. If a lithium battery is stored for a long time, capacity loss may occur. After a lithium battery is stored for 12 months in the recommended storage temperature, the



irreversible capacity loss rate is 3%~10%. It is recommended that batteries not be stored for a long period. If the batteries need to be stored for more than 6 months, it is recommended to recharge the batteries to 65~75% of the SOC. For example, they can be recharged every 6 months at least, and must be recharged to at least 50% of the SOC.



## 5. Unpacking

### 5.1 Check the Outer Packing

Before unpacking the battery pack and inverter, check the outer packing for damage, such as holes and cracks. If any damage is found, do not unpack the product and contact your dealer as soon as possible.

# 5.2 Scope of Delivery

Check the scope of delivery for completeness and any externally visible damage. Contact your distributor if the scope of delivery is incomplete or damaged.

| SMILE-S6-HV-INV Hybrid Inverter |                                      |                               |                                             |                                          |
|---------------------------------|--------------------------------------|-------------------------------|---------------------------------------------|------------------------------------------|
| Alphoess /= = = = =             |                                      |                               | 0 0                                         |                                          |
| Inverter<br>(X1)                | Upper Wall<br>Bracket (X1)           | Lower Wall<br>Bracket (X1)    | Inverter<br>Positioning<br>Paper Plate (X1) | Wall Anchor<br>ST6*55 (X6)<br>(Optional) |
|                                 | <b>J J J J</b>                       |                               |                                             | Indoor Use  Outdoor Use                  |
| PV+&PV-<br>Connectors<br>(X2)   | Cord End Terminal (X8)               | 10 Pin Terminal<br>Block (X1) | WiFi Module (X1)                            | Terminal<br>Resistor (X1)                |
|                                 |                                      |                               |                                             |                                          |
| Ring Terminal<br>Lug (X4)       | Screw M5*10 (X4)<br>Screw M6*16 (X2) | T20 Screwdriver (X1)          | CT (X1)<br>(Optional)                       | Grid-CT Cable (X1) (Optional)            |
| Manual                          |                                      |                               |                                             |                                          |
| Installation<br>Manual (X1)     | Magnet Ring (X1)                     | PC Gasket (X1)                |                                             |                                          |



| SMILE-BAT-8.2PH                  |                        |                                         |                                          |  |
|----------------------------------|------------------------|-----------------------------------------|------------------------------------------|--|
|                                  |                        |                                         |                                          |  |
| Battery Pack (X1)                | Floor Gasket (X3)      | Battery Positioning<br>Paper Plate (X1) | Battery Wall Bracket (X1)                |  |
|                                  | <b>(3)</b>             |                                         |                                          |  |
| Cardboard Limit<br>Board<br>(X1) | Battery COM Cable (X1) | Wall Anchor<br>ST6*55 (X2)              | Power Cable + (X1)<br>Power Cable - (X1) |  |
|                                  |                        |                                         | Guide                                    |  |
| Screw M5*12<br>(X2)              | Screw M6*6 (X2)        | Ring Terminal Lug<br>(X2)               | Quick Installation<br>Guide (X1)         |  |

### 6. Mounting

### 6.1 Requirements for Mounting

# **WARNING**

Danger to life due to fire or explosion

Despite careful construction, electrical devices can cause fires.

- Do not mount the product in areas containing highly flammable materials or gases.
- Do not mount the product in potentially explosive atmospheres.

#### **Basic Requirements**

- SMILE-S6-HV-INV (OUTDOOR) and SMILE-BAT-8.2PH (OUTDOOR) are suitable for indoor and outdoor use.
   SMILE-S6-HV-INV (INDOOR) and SMILE-BAT-8.2PH (INDOOR) are suitable for only indoor use.
- Do not install the inverter in a place where a person can easily touch it because its housing and heatsink are hot during operation.
- Do not mount the product in areas with flammable or explosive materials.
- Do not mount the product at a place within children's reach.
- Do not mount the product outdoors in salt areas because it will be corroded there and may cause fire. A salt area refers to the region within 500m from the coast or



prone to sea breeze. The regions prone to sea breeze vary depending on weather conditions (such as typhoons and monsoons) or terrains (such as dams and hills).

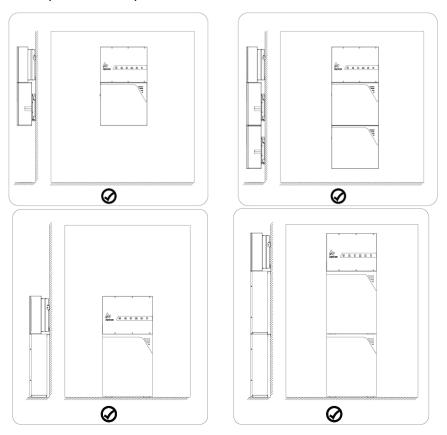
#### **Mounting Environment Requirements**

- The product must be mounted in a well-ventilated environment to ensure good heat dissipation.
- When mounted under direct sunlight, the power of the product may be derated due to additional temperature rise.
- Mount the product in a sheltered place or mount an awning over the product.
- The optimal temperature range for the battery pack to operate is from 15 to 30 ℃.
- Do not expose or place near water sources like downspouts or sprinklers.
- If the battery pack is mounted in the garage, then ensure that it is above the height of the vehicle bumper and door.

#### **Mounting Structure Requirements**

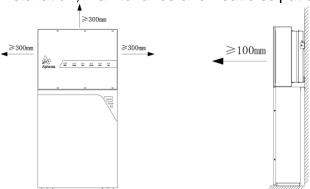
- The mounting structure where the product is mounted must be fireproof.
- Do not mount the product on flammable building materials.
- Ensure that the mounting surface is solid enough to bear the weight load.
- In residential areas, do not mount the inverter on drywalls or walls made of similar materials which have a weak sound insulation performance because the noise generated by the inverter is noticeable.




### **Mounting Angle and Stack Requirement**

SMILE-BAT-8.2PH should be floor-mounted.

SMILE-S6-HV-INV should be wall-mounted.


The installation angle requirement is as follow:

• Do not mount the battery pack and inverter at forward tilted, back tilted, side tilted, horizontal, or upside down positions.



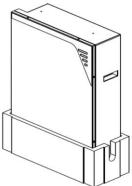
### **Mounting Space Requirements**

 Reserve sufficient clearance around the battery pack and inverter to ensure sufficient space for installation, maintenance and heat dissipation.

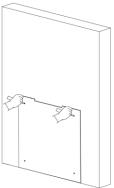




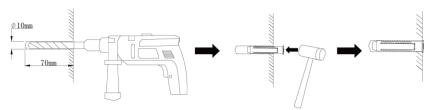
# 6.2 Preparing Tools and Instruments


| Category                      | Tools and Instruments                     |                              |                                                                          |  |
|-------------------------------|-------------------------------------------|------------------------------|--------------------------------------------------------------------------|--|
|                               |                                           | 5_6                          | Multimotor (DC voltage                                                   |  |
|                               | Hammer drill (with a<br>Ф10 mm drill bit) | Torque socket wrench<br>SW10 | Multimeter (DC voltage<br>measurement range ≥<br>1000 V DC)              |  |
|                               |                                           |                              | Torque screwdriver (slotted head,                                        |  |
|                               | Diagonal pliers                           | Wire stripper                | torque range: 0-2 N m)                                                   |  |
| Installation                  |                                           |                              | 60 R                                                                     |  |
|                               | Rubber mallet                             | Utility knife                | Cable cutter                                                             |  |
|                               |                                           |                              | 2000                                                                     |  |
|                               | Crimping tool<br>(model:<br>PV-CZM-22100) | Cord end terminal crimper    | Disassembly and<br>Assembly Tool (model:<br>PV-MS-HZ open-end<br>wrench) |  |
|                               |                                           |                              |                                                                          |  |
|                               | Vacuum cleaner                            | Heat shrink tubing           | Heat gun                                                                 |  |
|                               | ₫                                         |                              | <u> </u>                                                                 |  |
|                               | Marker                                    | Measuring tape               | Bubble or digital level                                                  |  |
| Personal protective equipment |                                           |                              |                                                                          |  |
|                               | Safety gloves                             | Safety goggles               | Anti-dust respirator                                                     |  |
|                               | Ellie I                                   |                              |                                                                          |  |
|                               | Safety shoes                              |                              |                                                                          |  |

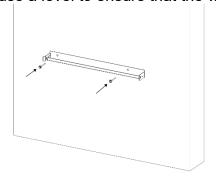



### 6.3 Mounting the SMILE-BAT-8.2PH and Inverter

#### 6.3.1 Mounting the battery pack


1. Lift the battery pack by using the handles at the two sides, take it out from the package carton. Do not put the battery pack upside down on the ground.




2. Place the battery positioning paper plate against the wall and the bottom against the floor, and mark the positions of the two drill holes.

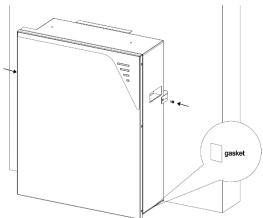


3. Drill 2 holes on the wall with a diameter of 10mm and a depth of about 70mm.



4. After cleaning the dust and other objects from the two holes, place 2 wall anchors into the holes, then attach the battery wall bracket to the wall by using the SW10 hexagon sleeve. Please use a level to ensure that the wall bracket is horizontal.






5. Install the cardboard limit board on the battery pack with screw M5\*12 (X 2) (tool: T20 screwdriver, torque: 2.5Nm).



- 6. Place the battery against the wall, align the holes at the battery side to the screw holes of the wall bracket.
- 7. Tighten the wall bracket and the battery pack with screw M5\*12 (X 2) (tool: T20 screwdriver, torque: 2.5Nm).

If the floor of installation site is uneven, please use floor gaskets to level at the bottom of the battery pack



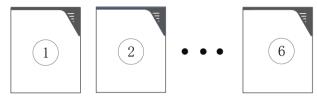
### WARNING

#### Risk of injury when lifting the battery pack, or if it is dropped

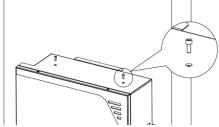
The battery pack is very heavy. There is risk of injury if the battery pack is lifted incorrectly or dropped while being transported or when attaching it to or removing it from the wall bracket.

- Transport the battery pack always as described below.
- It is forbidden to stack 3 batteries from top to bottom.
- 8. Mounting more batteries

You can install extra batteries up to 6 batteries in a system.


Please install extra batteries by side, also batteries can be stacked up to two batteries per column. Expansion wiring please refer to Chapter 7.8.

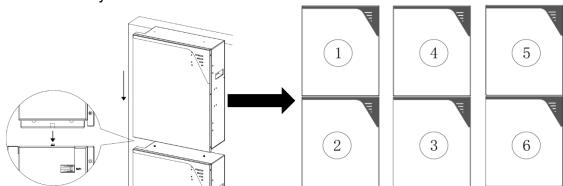
1) If you will install extra batteries by side, please repeat steps 1-6 and keep the distance between two batteries greater than 300mm. The space between the


\_\_\_\_\_



left and the right battery is a recommended distance. Keep the distance as short as you can if there is no influence to the operation.

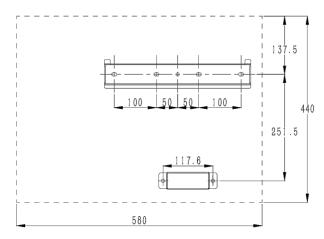



2) For battery stack, lock the screw M6\*6 on top of the first battery pack.



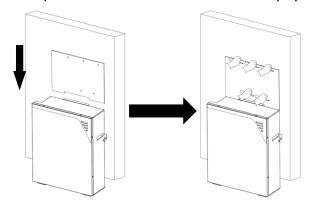
3) Place the battery positioning paper plate against the wall and the bottom with notch against the first battery pack. Repeat steps 1-7.



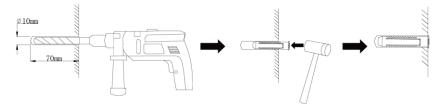

4) The bottom limit holes of the second battery will match the top screws of the first battery.






#### 6.3.2 Mounting the inverter

Dimensions in mm

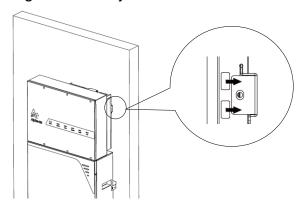



The steps to mount the inverter are listed below:

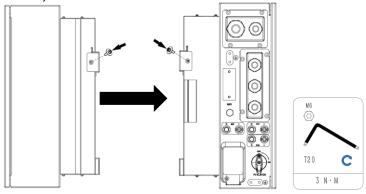
1. Fit the bottom of the inverter's positioning paper plate into the top of the battery against wall, mark the positions of the drill holes on the paper plate.




2. Cover the top of the battery with plastic bag and drill 5 holes on the wall with drill Φ10, insert 5 screw anchors into the drill holes.





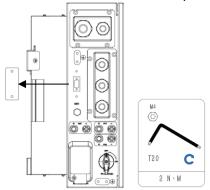


3. Attach the wall bracket to the wall using the screws with the tool of SW10 hexagon sleeve. Please use a level to ensure that the wall bracket is horizontal.



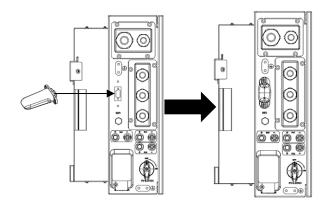
4. Hold the inverter by using the handles at two sides, attach the inverter onto the wall bracket tilted slightly downwards. If the inverter is not aligned with the battery, please increase or decrease PC gaskets to adjust it.



5. Tighten the wall bracket and the inverter with screw M6\*16 (X 2) (tool: T20 screw-driver, torque: 3.0Nm).




6. Make electrical connection (please refer to Section 错误!未找到引用源。 Electrical Connection).




## 6.4 Mounting the WiFi Module

1. Remove the WiFi cover from the left of the inverter (tool: T20 screwdriver).



2. Tighten the WiFi module on the inverter with screw M4\*12 (X2) (tool: T20 screw-driver, torque: 2.0 Nm).





### 7. Electrical Connection

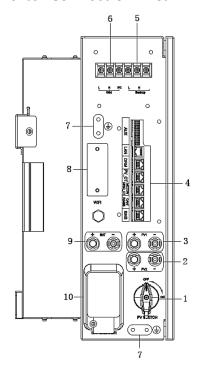
#### **Precautions**

## **DANGER**

Before connecting cables, ensure that all switches and breakers of the inverter and the battery pack and all the switches connected to inverter and the battery pack are set to OFF. Otherwise, the high voltage of the product may result in electric shocks.

# **WARNING**

- The device damage caused by incorrect cable connections is not covered under any warranty.
- Only certified electricians are allowed to connect cables.
- Operation personnel must wear proper PPE when connecting cables.


#### **NOTICE**

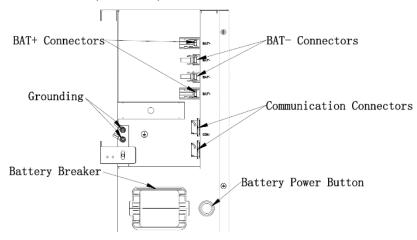
The cable colors shown in the electrical connection diagrams provided in this chapter are for reference only. Select cables in accordance with local cable specifications (green-and-yellow cables are only used for PE).



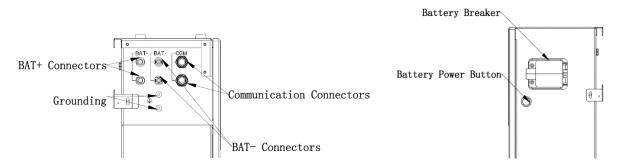
## 7.1 Overview of the Connection Area

### 7.1.1 Overview of the Inverter Connection Area




| Position | Designation                                            |  |
|----------|--------------------------------------------------------|--|
| 1        | PV switch                                              |  |
| 2        | 1 positive and 1 negative PV connectors, PV input A    |  |
| 3        | 1 positive and 1 negative PV connectors, PV input B    |  |
| 4        | Communication port (BMS, CAN/RS485, Meter/Grid-CT, PV- |  |
|          | CT, DRM, LAN, AUX )                                    |  |
| 5        | Backup connection port                                 |  |
| 6        | Grid connection port                                   |  |
| 7        | Connection point for an additional grounding           |  |
| 8        | Connection port for the WiFi module                    |  |
| 9        | 1 positive and 1 negative BAT power connectors         |  |
| 10       | Battery breaker                                        |  |




### 7.1.2 Overview of the Battery Pack Connection Area

The battery breaker is switched off when shipped.

### a) SMILE-BAT-8.2PH (INDOOR)



#### b) SMILE-BAT-8.2PH (OUTDOOR)



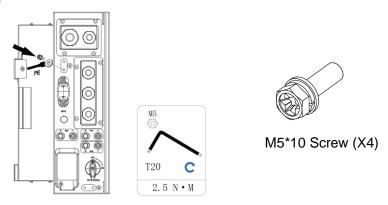
# 7.2 Preparing Cables

| No.          | Cable                               | Туре                                                                                                | Conductor Cross<br>Section Area Range      | Outer<br>Diameter | Source                                |
|--------------|-------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------|---------------------------------------|
| 1            | Battery power cable                 | Standard PV cable in the industry (recommended type: PV1-F)                                         | $6\sim$ 10 mm $^2$                         | N/A               | Delivered with<br>the battery<br>pack |
| 2            | Battery<br>communic-<br>ation cable | Standard network cable in the industry (recommended type: Cat5e, UTP, UV-resistant for outdoor use) | 0.12 ~0.2 mm <sup>2</sup><br>(AWG26~AWG24) | N/A               | Delivered with<br>the battery<br>pack |
| <b>3</b> *1  | Signal cable                        | Standard network cable in the industry (recommended type: Cat5e, FTP, UV-resistant for outdoor use) | 0.12 ~0.2 mm <sup>2</sup><br>(AWG26~AWG24) | N/A               | Delivered with the inverter           |
| 4            | PV power cable                      | Standard PV cable in the<br>industry (recommended type:<br>PV1-F)                                   | 4 mm <sup>2</sup>                          | 5.5 ~ 9 mm        | Purchased by the installer            |
| <b>5</b> **2 | Signal cable                        | Standard network cable in the industry (recommended type: Cat5e, FTP, UV-resistant for outdoor use) | 0.12 ~0.2 mm <sup>2</sup><br>(AWG26~AWG24) | 4 ~ 6 mm          | Purchased by the installer            |
| 6**3         | Signal cable                        | Multiple-core outdoor shielded twisted pair cable                                                   | $0.1\sim$ $1.3~\text{mm}^2$                | 4 ~ 6 mm          | Purchased by the installer            |



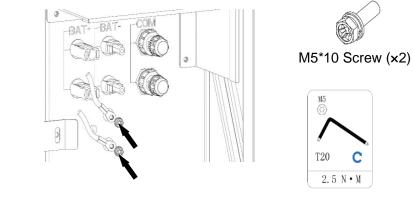
| 7 | AC power cable | Three-core (L, N and PE) outdoor copper cable | $4\sim\!6\mathrm{mm}^2$ | 12.6 ~ 13.9<br>mm | Purchased by the installer |
|---|----------------|-----------------------------------------------|-------------------------|-------------------|----------------------------|
| 8 | PE cable       | Single-core outdoor copper cable              | $4\sim$ 10 mm $^2$      | N/A               | Purchased by the installer |

**X1** For CT communication connection with inverter.

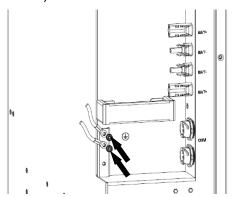

<sup>2</sup> For CAN/RS485, LAN, Meter, DRM communication connection with inverter.

**X3** For AUX communication connection with inverter




### 7.3 Connecting Additional Grounding

An external grounding connection is provided at the left side of the inverter. Prepare M5 OT terminals, strip the grounding cable insulation, insert the stripped part of the grounding cable into the ring terminal lug and crimp using a crimping tool. Connect the OT terminal with ground point using the torque is 2.5 Nm with T20 screwdriver.




Connect the ground points between the battery and the inverter to ensure that the battery and the inverter have been grounded, as shown in the figure below.

### a) SMILE-BAT-8.2PH (OUTDOOR)



#### b) SMILE-BAT-8.2PH (INDOOR)





### 7.4 AC Connection

### 7.4.1 Conditions for the AC Connection

AC breakers must be installed on the AC side of the inverter to ensure that the inverters can be safely disconnected from the power grid and the load.



### **DANGER**

### Danger to life due to fire!

You must protect each inverter with an individual AC circuit breaker in order to ensure that the inverter can be disconnected safely.

Do not connect loads between the inverter and the grid breaker.

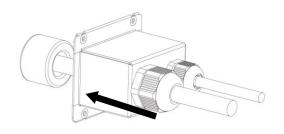
No consumer load should be applied between the AC circuit breaker and the inverter. Use dedicated circuit breakers with load switch functionality for load switching. The selection of the AC circuit breaker rating depends on the wiring design (wire cross section area), cable type, wiring method, ambient temperature, inverter current rating, etc. Derating of the AC circuit breaker rating may be necessary due to self-heating or if exposed to heat.

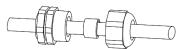
The maximum AC current of the inverters can be found in the following table.

We recommend the following AC circuit breaker for AC connection.

| Description | Max Current       |                    | Recommend AC Circuit |
|-------------|-------------------|--------------------|----------------------|
| Description | Inverter (indoor) | Inverter (outdoor) | Breaker Rating       |
| Grid side   | 40A               | 52.2A              | 63A                  |
| Backup side | 21.7A             | 26.1A              | 32A                  |

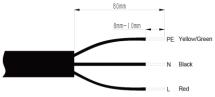
#### 7.4.2 Grid and Backup Connection


There are two AC terminal blocks for grid and backup connection which have the same installation steps.

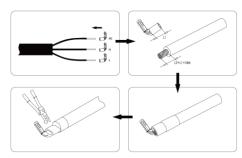

We recommend the following cable requirements for AC connection.

| Description                                  | Value               |
|----------------------------------------------|---------------------|
| Cable diameter range for grid cable gland    | 9~21 mm             |
| Cable diameter range for backup cable gland  | 9~16 mm             |
| Copper conductor cross section area range    | 4~6 mm <sup>2</sup> |
| Stripping length of the insulated conductors | 10~12 mm            |

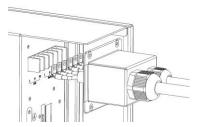
- 1. Take out the cord end terminals and AC connection cover provided by the inverter.
- 2. Lead the AC cable through the cable gland of the AC connection cover, don't tighten the pressure cap of the cable gland. Grid cable must pass through magnetic ring which is provided as inverter accessory.



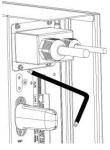



Installation method of AC cable via cable gland. If the outer diameter of the cable is thicker, remove the inner sealing ring from the cable gland.


3. Dismantle the AC cable by 80mm, and strip the insulation of L, N and PE conductors by 10mm.




4. Insert the stripped part of the conductors into the cord end terminals and crimp them using a crimping tool.



5. Insert the terminals with different color conductors to the holes of the respective polarity and tighten them one by one using the torque of 2 Nm with tool of cross recessed screwdriver.



6. Fix the AC connection cover tightly on the inverter and tighten the pressure caps of the two cable glands.







### **NOTICE**

For Australia and New Zealand installation site, the neutral cable of grid side and backup side must be connected together, otherwise backup output function will not work.

#### 7.4.3 Residual Current Protection

The inverter is equipped with an all-pole sensitive residual current monitoring unit (RCMU) with an integrated differential current sensor which fulfills the requirement of DIN VDE0100-712(IEC60364-7-712:2002).

Therefore, an external residual current device (RCD) is not required. If an external RCD needs to be installed because of local regulations, a RCD type A or type B can be installed as an additional safety measure.

The all-pole sensitive residual current monitoring unit (RCMU) detects alternating and direct differential currents. The integrated differential current sensor detects the current difference between the neutral conductor and the line conductor. If the current difference increases suddenly, the inverter disconnects from the grid. The function of the all-pole sensitive residual current monitoring unit (RCMU) has been tested according to IEC62109-2.

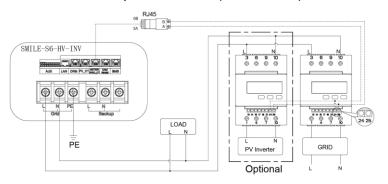


Notice of installing an external residual current device (RCD) for installation of Australia and New Zealand

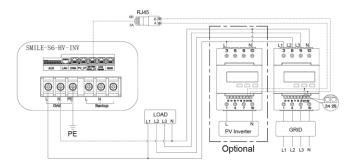
Where an external residual current device (RCD) is required in a TT or TN-S system, please install a residual current device which trips at a residual current of 30mA.



#### 7.4.4 Meter Connection

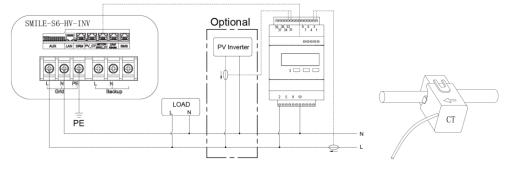

The system supports the following two different metering schemes in order to record the feed-in energy and consumption from grid:

- DTSU666-3\*230V 5A: Three/single-phase meter (without CT)
- DTSU666-100/40mA: Three/single-phase meter (with 3 or 6 CTs)


### **Meter wiring introduction**

### **NOTICE**

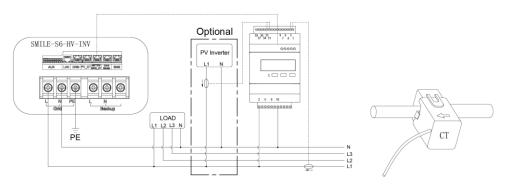
- If the extra PV inverter are not used, the system is suitable for DC mode.
- If you use the extra PV inverter, the system is suitable for AC or Hybrid mode.
- 1. DTSU666-3\*230V 5A: Three-phase meter (without CT) connection




Wiring at single-phase home



Wiring at three-phase home


2. DTSU666-100/40mA: Three-phase meter (with 3 or 6 CTs) connection



Wiring at single-phase home

\_\_\_\_\_

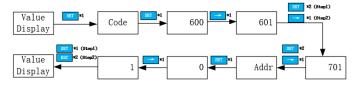




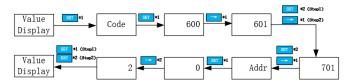
Wiring at three-phase home

| Grid CT     | PV CT        |
|-------------|--------------|
| 1IC (White) | 31IC (White) |
| 3IC (Blue)  | 33IC (Blue)  |

NOTE: If you have extra PV inverter in the whole system, with two set CTs, you don't need the second CT meter. One set CT is used for the grid side and another set for PV inverter side.

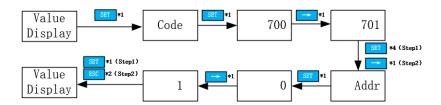



### **Meter Address Setting**


| Model                             | Grid Meter Address | PV Meter Address |
|-----------------------------------|--------------------|------------------|
| DTSU666-3*230V 5A<br>(without CT) | 1                  | 2                |
| DTSU666-100/40mA<br>(with CT)     | 1                  | N/A              |

### 1. DTSU666-3\*230V 5A: Three-phase meter (without CT)

When the meter is used as Grid meter, please follow the steps below to complete the address setting by pressing the corresponding button and the number of times.




When the meter is used as PV meter, please follow the steps below to complete the address setting by pressing the corresponding button and the number of times.



### 2. DTSU666-100/40mA: Three-phase meter (with CT)

When the meter is used as Grid meter, please follow the steps below to complete the address setting by pressing the corresponding button and the number of times.



### Meter Setting on AlphaCloud

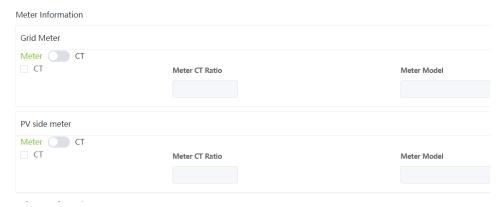
#### Step 1:

When the system work mode is selected as DC, click the button under the "Grid Meter" to turn the "Meter" green.

When the system work mode is selected as AC or Hybrid, click the buttons under the "Grid Meter" and "PV side meter" to turn the "Meter" green.

#### Step 2:

Click "Save" and wait a few minutes to refresh the page.


When the "Meter Model" displays DTSU666 model, the setting is successful.

\_\_\_\_\_



#### NOTE:

It is forbidden to tick CT to modify the CT ratio.



### Meter Setting on AlphaAPP

#### Step 1:

When the system work mode is selected as DC, only tick "Meter" on the right of the "Grid Meter".

When the system work mode is selected as AC or Hybrid, both tick "Meter" on the right of the "Grid Meter" and "PV side meter".

### Step 2:

Click "Submit" and enter the "System information" page to check the meter model. The setting is successful if meter model is DTSU666-100/40mA.

#### NOTE:

It is forbidden to tick CT to modify the CT ratio.



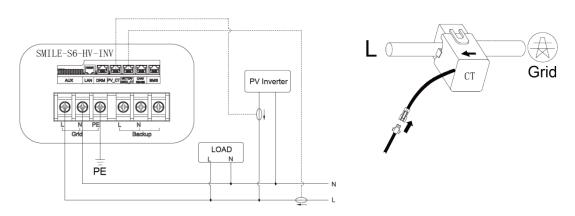




#### 7.4.5 CT Connection

We provide a Grid-CT cable and a CT as accessory for DC-coupled systems.

Step 1: Insert the registered jack of the Grid-CT cable into the Grid-CT port on the inverter

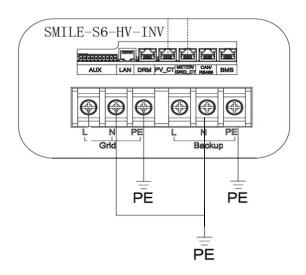

Step 2: Connect the other end of Grid-CT cable with the CT.

Step 3: Buckle the Grid-CT on the live wire of the house.

For AC-coupled systems and Hybrid-coupled systems, another PV-CT is needed to buy. Buckle the PV-CT on the live wire of the PV inverter connecting point and insert the registered jack of the PV-CT cable into the PV-CT port on the SMILE-S6-HV-INV.

#### NOTE:

The arrow of the CT should point to the grid port of the inverter from the grid or the PV inverter.

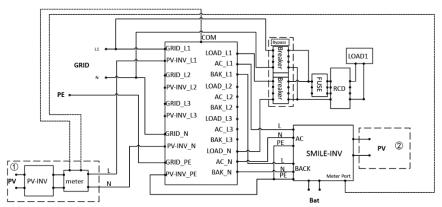





### 7.4.6 Backup Box & Backup Box-PLUS Connection

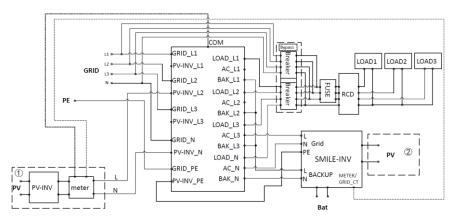
### **NOTICE**

- •The residual current device (RCD) should be connected to the load side.
- •For Australia safety regulation, the neutral cable of On-Grid side and Back-Up side must be connected together, otherwise, Back-Up function will not work.




The neutral connector should be connected like above.

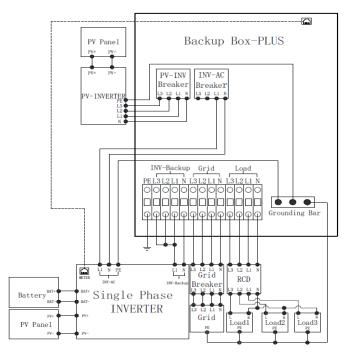
Three/single-phase meter (Contain off-grid switching)


| Description     | Maximum current per phase |  |
|-----------------|---------------------------|--|
| Backup Box      | 32A                       |  |
| Backup Box-PLUS | 63A                       |  |

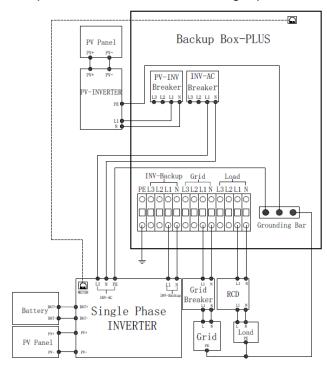
#### 1) Backup Box Connection



Backup Box connection at single-phase home





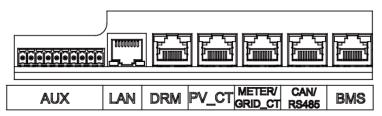


Backup Box connection at three-phase home



### 2) Backup Box-PLUS Connection

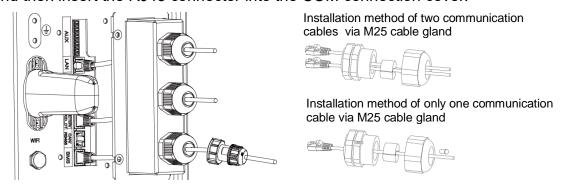


### Backup Box-PLUS connection at single-phase home




Backup Box-PLUS connection at three-phase home



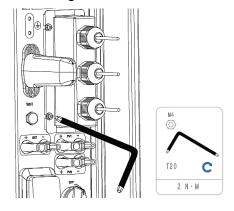

### 7.5 Communication Connection

Communication connection port as follows:



Please follow the below steps for battery communication connection.

 Lead the communication cables through the cable glands of the COM connection cover, don't tighten the pressure caps of the cable glands. Insert the RJ45 plugs to the relative RJ45 sockets.
 For outdoor use, the RJ45 connector is equipped with a waterproof connecter. Loosen the waterproof connecter, pass the RJ45 connector through cable gland and then insert the RJ45 connector into the COM connection cover.



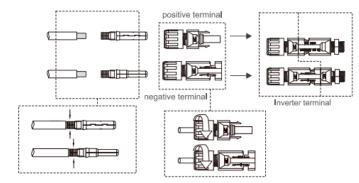

- 1) Connect the BMS port on the inverter and COM port on the battery with communication cable.
- 2) For meter wiring, please read electricity meter wiring instructions of the meter.
- 3) If DRM support is specified, the system may only be used in conjunction with a Demand Response Enabling Device (DRED). This ensures that the system implements the commands from the grid operator for active power limitation at all times. The system and the Demand Response Enabling Device (DRED) must be connected in the same network. Only DRM0 is available for SMILE-S6-HV.



| RJ45 Pin | MODE    | View     |
|----------|---------|----------|
| 1        | DRM4    | <u> </u> |
| 2        | DRM5    |          |
| 3        | DRM1    |          |
| 4        | DRM2    |          |
| 5        | DRM3    |          |
| 6        | DRM0    |          |
| 7        | N/A     |          |
| 8        | Ref Gen |          |

- Take out 10 pin terminal block for AUX connection.
   For AUX position definition, please refer to the relative wiring document.
- 2. Place the COM connection cover against the inverter housing and tighten them.



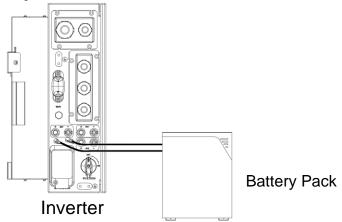



### 7.6 PV Connection

Please ensure the follows before connecting PV strings to the inverter:

- Make sure the open voltage of the PV string will not exceed the max. DC input voltage (600Vdc). Violating this condition will void the warranty.
- Make sure the polarity of the PV connectors is correct.
- Make sure the PV-switch, breakers of battery, breakers of AC-BACKUP and AC-Grid are all in their off-states.
- Make sure the PV resistance to ground is higher than 200 KΩ.

The inverter uses the H4 PV connectors. Please follow the picture below to assemble the H4 connectors. PV cable cross section requirements: 4 mm<sup>2</sup>.




Use appropriate crimping tools for crimping

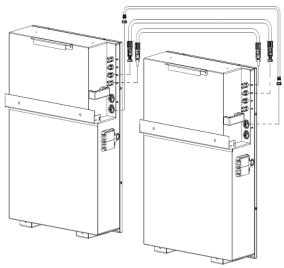
### 7.7 Battery Power Connection

Please follow the below steps for battery power connection.

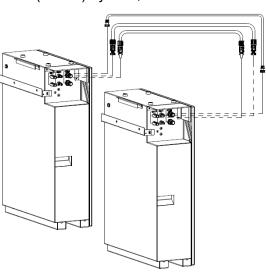
- 1. Disconnect the battery circuit breaker and secure it against reconnection.
- 2. Take out the battery power cables which are provided by the battery pack.
- 3. Ensure the correct polarity of power cable of the batteries before connecting to the inverter.
- 4. Connect the battery power cables to the respective connection ports of the inverter, a "click" sound means fully connection.



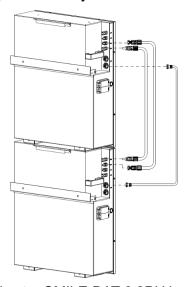



### 7.8 Battery Pack Expansion Connection

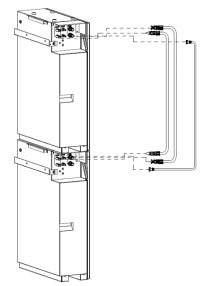
You can install extra batteries up to 6 batteries in a system.


Please install extra SMILE-BAT-8.2PH batteries by side, also batteries can be stacked up to two batteries per column.

Connect the power cables from battery 2 to battery 1.


Connect the BMS communication cables from battery 2 to battery 1.

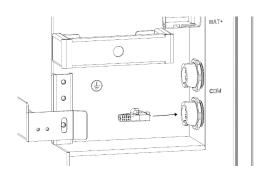



Install extra SMILE-BAT-8.2PH batteries (indoor) by side, without stack

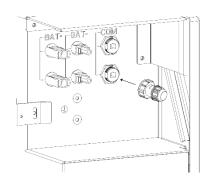


Install extra SMILE-BAT-8.2PH batteries (outdoor) by side, without stack




Install extra SMILE-BAT-8.2PH batteries (indoor) with stack





Install extra SMILE-BAT-8.2PH batteries (outdoor) with stack

Take out the terminal resistor provided by the inverter, insert it to the unused communication port of the last battery.







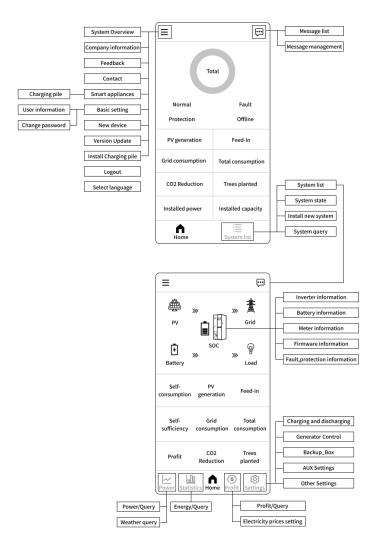


SMILE-BAT-8.2PH (OUTDOOR)



## 8. WiFi Setting

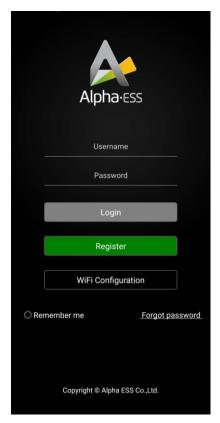
### 8.1 Download and Install APP


- 1. Android device users can download the APP through major Android application markets such as Google Play.
- 2. IOS device users can search for "AlphaESS" in AppStore and download the APP.



AlphaESS-APP

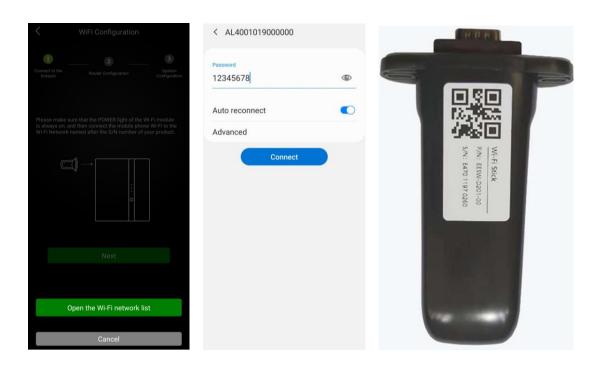



### 8.2 Overview of Functions for Installer Account



### 8.3 WiFi Module Setting

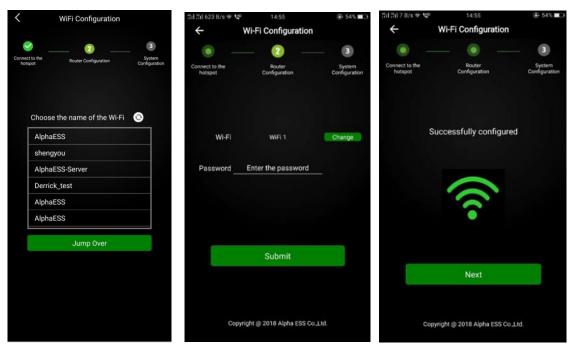
This section is for users who have a system with a WiFi module. AlphaESS App supports network configuration, setting of the system basic parameter, and the viewing of system operation and configuration information.






**Step 1:** Open AlphaESS APP, click the "Wi-Fi Configuration" button and enter the WiFi configuration interface.




**Step 2:** After that please check whether your mobile phone has connected to the system's hotspot.



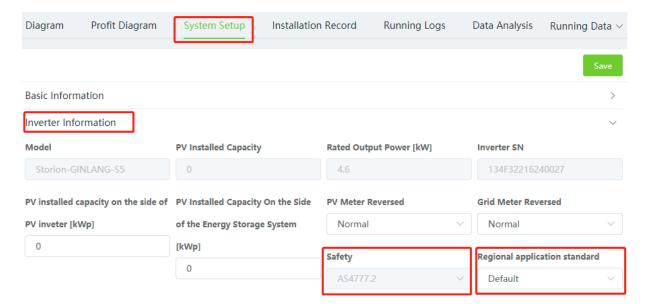
**Step 3:** If your mobile phone hasn't connected to the system's hotspot, please open the Wi-Fi network list. Please find the hotspot named by the product SN



in WLAN list then enter the password "12345678" and connect to it. After successfully setting it, please go back to APP and click "Next".



**Step 4:** Select the WiFi of your home you are using, enter the password, complete the WiFi configuration and submit. If there is no network currently, you can click Jump over to skip the WiFi configuration step and directly set the system parameters. **NOTE:** 

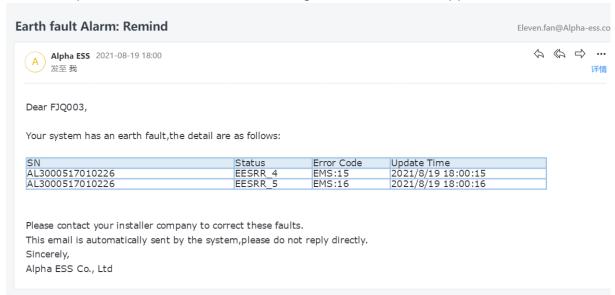

The system will not be able to connect to the Internet without WiFi configuration. For setting the system basic parameters, please refer to AlphaESS APP user guide on the official website.

### 8.4 Safety Parameters Settings

### **Procedure**

- 1. Login the account;
- 2. Click 'System Setup';
- 3. Choose 'Inverter Information';
- 4. Choose corresponding 'Safety parameter'






If the safety country is AS4777.2, regional application standard have to be set for different Volt-Watt & Volt-Var settings. All the country code and regional application standard are shown in Appendix 2 & 3

### 8.5 Earth Fault Alarm

Please note the earth fault alarm will be automatically send over to the customer email address. So please let the customer type in the most frequently used email address when register on Alpha Portal.

The example email will be like the following if the earth fault happens.





# 9. Commissioning

# 9.1 Checking Before Power-On

| No. | Check Item                         | Acceptance Criteria                                                                                              |  |
|-----|------------------------------------|------------------------------------------------------------------------------------------------------------------|--|
| 1   | Mounting environment               | The mounting space is proper, and the mounting environment is clean and tidy, without foreign object.            |  |
| 2   | Battery pack and inverter mounting | The battery pack and inverter are mounted correctly, securely, and reliably.                                     |  |
| 3   | WiFi mounting                      | The WiFi module is mounted correctly, securely, and reliably.                                                    |  |
| 4   | Cable layout                       | Cables are routed properly as required by the customer.                                                          |  |
| 5   | Cable tie                          | Cable ties are secured evenly and no burr exists.                                                                |  |
| 6   | Grounding                          | The ground cable is connected correctly, securely, and reliably.                                                 |  |
| 7   | Switch and breakers status         | The PV switch and battery breakers and all the breakers connecting to the product are OFF.                       |  |
| 8   | Cable connections                  | The AC cable, PV cable, battery cable, and communication cables are connected correctly, securely, and reliably. |  |
| 9   | Unused power terminals             | Unused power terminals are blocked by watertight caps.                                                           |  |



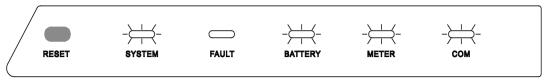
### 9.2 Check the Running State

### **Prerequisites**

Before switching on the AC breaker between the inverter and the grid, check that the AC voltage on the power grid side of the AC breaker is within the specified range. Please select the acceptance of installation on site when the light intensity is strong.

#### **Procedure**

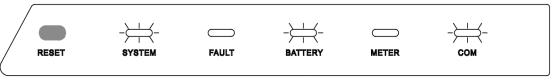
- 1. Ensure that the PV switch and battery breakers of the product and all the breakers connecting to the product are OFF.
- 2. Check the grid-connected state of the product Short press the power button on the left side of battery pack, then switch on the battery breaker of battery pack.


Switch on the battery breaker which is located at the left of the inverter.

Switch on the PV switch which is located at the left of the inverter.

Switch on the external AC breaker between the grid and the inverter.

Set the operating parameters through the APP.


Wait about 3 minutes for the inverter to enter the grid-connected state, and observe the indicators states on the display panel of the inverter. At this time, the following 4 LEDs ("SYSTEM", "BATTERY", "METER", "COM") on the display panel is always on.



3. Check the UPS state of the product

Switch off the external AC breaker between the grid and the inverter.

The inverter will enter the UPS state at once, and observe the indicators states on the display panel of the inverter. At this time, the following 3 LEDs ("SYSTEM", "BATTERY", "COM") on the display panel is always on.



4. Check the wiring of the backup load

Switch on the external AC breaker between the load and the inverter. Please connect a low-power electrical appliance to the socket of backup load. If the electrical appliance can work normally, it means that the wiring of the backup has been installed successfully.

### **NOTICE**

During commissioning, if the LED indictors on the display panel of the inverter or the battery pack show red, please refer to Section 10.2 for troubleshooting.

\_\_\_\_\_



### 9.3 Powering Off the Product



After the inverter and battery pack is powered off, the remaining electricity and heat may still cause electric shocks and body burns. Therefore, put on protective gloves and operate the product 5 minutes after the power-off.

#### **Procedure**

- 1. Long press the power button of battery pack for 6 seconds, then switch off the battery breaker of battery pack.
- 2. Switch off the battery breaker which is at the left bottom of the inverter.
- 3. Switch off the PV switch at the left bottom of the inverter.
- 4. Switch off the PV switch between the PV string and the inverter if there is any.
- 5. Switch off the AC breaker between the inverter and the load.
- 6. Switch off the AC breaker between the inverter and the grid.



### 10. Maintenance and Troubleshooting

### **10.1** Routine Maintenance

Normally, the inverter and battery pack need no maintenance or calibration. Disconnect the inverter and battery pack from all power sources before cleaning. Clean the housing, cover and display with a soft cloth.

To ensure that the inverter and battery pack can operate properly in the long term, you are advised to perform routine maintenance on it as described in this chapter.

#### **Maintenance checklist**

| Check Item      | Acceptance Criteria                            | Maintenance Interval  |
|-----------------|------------------------------------------------|-----------------------|
| Product         | The heatsink of the inverter are free from     | Once every 6 to 12    |
| cleanliness     | obstacles or dust.                             | months                |
| Product visible | The inverter and battery pack are not          | Once every 6 months   |
| damage          | damaged or deformed.                           |                       |
| Product running | The inverter and battery pack operate          | Once every 6 months   |
| status          | with no abnormal sound.                        |                       |
|                 | 2. All parameters of the inverter and battery  |                       |
|                 | pack are correctly set. Perform this check     |                       |
|                 | when the inverter and battery pack is running. |                       |
| Electrical      | Cables are securely connected.                 | Perform the first     |
| connections     | 2. Cables are intact, and in particular, the   | maintenance 6 months  |
|                 | cable jackets touching the metallic surface    | after the initial     |
|                 | are not scratched.                             | commissioning.        |
|                 | 3. Unused PV input terminals and COM           | From then on, perform |
|                 | ports of the inverter, and power and COM       | the maintenance once  |
|                 | terminals of the battery pack are locked by    | every 6 to 12 months. |
|                 | watertight caps if the product is mounted      |                       |
|                 | outdoor.                                       |                       |



### Risk of burns due to hot heatsink and housing of the inverter

The heatsink and housing can get hot during operation.

- During operation, do not touch any parts other than the cover of the inverter.
- Wait approx. 30 minutes before cleaning until the heatsink has cooled down.



## 10.2 Troubleshooting

### 10.2.1 Inverter Error Troubleshooting

| Error No. | Error Description            | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|-----------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 100000    | Grid_OVP                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 100001    | Grid_UVP                     | 1. Check whether the power grid is abnormal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 100002    | Grid_OFP                     | 2. Check whether the grid connection is abnormal.  3. Restart the inverter to see if the fault still exists. If it still                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 100003    | Grid_UFP                     | exists, contact service.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 100004    | Phase_locked_fault           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 100005    | BUS_OVP1                     | <ol> <li>Check whether the input voltage of PV1 and PV2 exceeds 550V.</li> <li>If the first one does not exist, restart the inverter to see if the fault still exists. If it still exists, contact service.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 100007    | Insulation_fault             | <ol> <li>If the power on time fails in the morning, it may be caused by wet weather.</li> <li>Use a multimeter to test the impedance of the ground to the housing. If the impedance is not close to 0, confirm that there is a connection problem between the ground wire and the housing.</li> <li>Test the impedance of ground to PV+ / PV- / BAT+ / BAT- with a multimeter. If the impedance is less than 25 KΩ, check whether the connection of each port is correct.</li> <li>Confirm to install the inverter according to the manual.</li> <li>Restart the inverter to see if the fault still exists. If it still exists, contact customer service.</li> </ol> |  |
| 100008    | GFCI_fault                   | Restart the inverter to see if the fault still exists. If it still ex-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 100009    | Leakage current test failure | ists, contact service.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 100010    | Grid_relay_fault             | <ol> <li>Confirm to install the inverter according to the manual.</li> <li>Restart the inverter to see if the fault still exists. If it still exists, contact service.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 100011    | Over_Temperature             | <ol> <li>Try to lower the ambient temperature.</li> <li>Confirm to install the inverter according to the manual.</li> <li>After the inverter is powered off and waiting for 30 minutes, then restart it. If the fault still exists, contact service.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 100012    | PV_Reverse                   | Check whether PV wiring is reversed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 100013    | BAT_Reverse                  | Check whether the battery connection is reversed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 100017    | MPPT1_OVP                    | Check the PV1 voltage. If it exceeds 585VDC, reduce the number of PV modules.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 100018    | MPPT1_SW_OCP                 | Try to reduce the PV power.     Restart the inverter to see if the fault still exists. If it still                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 100019    | MPPT1_HW_OCP                 | exists, contact service.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 100020    | MPPT1_OTP                    | <ol> <li>Try to lower the ambient temperature.</li> <li>Make sure that the inverter is installed according to the manual and there is no shelter around the inverter.</li> <li>After the inverter is powered off and waiting for 30 minutes, then restart it. If the fault still exists, contact service.</li> </ol>                                                                                                                                                                                                                                                                                                                                                 |  |
| 100021    | MPPT2_OVP                    | Check the PV2 voltage. If it exceeds 585V, reduce the number of PV modules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |



| 100022 | MPPT2_SW_OCP               | 1. Try to reduce the PV power.                                                                                                                                                                                                                                                                                       |
|--------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 100023 | MPPT2_HW_OCP               | 2. Restart the inverter to see if the fault still exists. If it still exists, contact service.                                                                                                                                                                                                                       |
| 100024 | MPPT2_OTP                  | 1. Try to lower the ambient temperature. 2. Make sure that the inverter is installed according to the manual and there is no shelter around the inverter. 3. After the inverter is powered off and waiting for 30 minutes, then restart it. If the fault still exists, contact service.                              |
| 100025 | BAT_OVP                    | Check whether the actual battery voltage exceeds the battery charging cut-off voltage by more than 20V.                                                                                                                                                                                                              |
| 100026 | BAT_UVP                    | Check whether the actual battery voltage is lower than the battery discharge cut-off voltage.                                                                                                                                                                                                                        |
| 100027 | Battery_lose               | Confirm that the wiring is normal, and check whether the battery voltage sampling value is less than 75V.                                                                                                                                                                                                            |
| 100028 | BAT_OTP                    | <ol> <li>Try to lower the ambient temperature.</li> <li>Make sure that the inverter is installed according to the manual and there is no shelter around the inverter.</li> <li>After the inverter is powered off and waiting for 30 minutes, then restart it. If the fault still exists, contact service.</li> </ol> |
| 100029 | BAT1_charge_OCP            |                                                                                                                                                                                                                                                                                                                      |
| 100030 | BAT1_discharge_OCP         |                                                                                                                                                                                                                                                                                                                      |
| 100031 | BAT2_charge_OCP            | 1. Try to reduce battery power.                                                                                                                                                                                                                                                                                      |
| 100032 | BAT2_discharge_OCP         | 2. Restart the inverter to see if the fault still exists. If it still exists, contact service.                                                                                                                                                                                                                       |
| 100033 | BAT1_HW_OCP                |                                                                                                                                                                                                                                                                                                                      |
| 100034 | BAT2_HW_OCP                |                                                                                                                                                                                                                                                                                                                      |
| 100035 | INV_OTP                    | <ol> <li>Try to lower the ambient temperature.</li> <li>Make sure that the inverter is installed according to the manual and there is no shelter around the inverter.</li> <li>After the inverter is powered off and waiting for 30 minutes, then restart it. If the fault still exists, contact service.</li> </ol> |
| 100036 | INV_OVP                    | The effective value of grid voltage exceeds the maximum protection value of national standard voltage.                                                                                                                                                                                                               |
| 100037 | INV_UVP                    | Whether the off grid output terminal is short circuited or has impact load.     Restart the inverter to see if the fault still exists. If it still exists, contact service.                                                                                                                                          |
| 100038 | Output_DC_<br>over_current | Restart the inverter to see if the fault still exists. If it still exists, contact service.                                                                                                                                                                                                                          |
| 100039 | INV_OCP                    | <ol> <li>Check whether the off grid output terminal is overloaded, short circuited or has impact load.</li> <li>Restart the inverter to see if the fault still exists. If it still exists, contact service.</li> </ol>                                                                                               |
| 100040 | INV_HW_OCP                 | Restart the inverter to see if the fault still exists. If it still ex-                                                                                                                                                                                                                                               |
| 100041 | Output_DC_<br>over_voltage | ists, contact service.                                                                                                                                                                                                                                                                                               |

\_\_\_\_\_



| 100042 | Output_short                    | <ol> <li>Use a multimeter to test the impedance of the off grid output. If it is small, check whether the wiring is correct.</li> <li>Restart the inverter to see if the fault still exists. If it still exists, contact service.</li> </ol>                                                                        |  |
|--------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 100043 | Output_overload                 | <ol> <li>Check whether the load exceeds the rated power.</li> <li>Restart the inverter to see if the fault still exists. If it still exists, contact service.</li> </ol>                                                                                                                                            |  |
| 110000 | Bat over-voltage alarm          | Check that the actual battery voltage is 10V higher than the battery charging cut-off voltage                                                                                                                                                                                                                       |  |
| 110001 | Bat under-voltage alarm         | Check that the actual battery voltage is 10V higher than the battery discharging cut-off voltage                                                                                                                                                                                                                    |  |
| 110002 | output_overload_alarm           | Check whether the load exceeds 0.95 of the rated power                                                                                                                                                                                                                                                              |  |
| 110003 | abnormal_temperature_<br>sensor | Restart the inverter to see if the fault still exists. If it still exists, contact service.                                                                                                                                                                                                                         |  |
| 110004 | dc_power_alarm                  | <ol> <li>Check whether the total power of the battery and PV is less than the load power.</li> <li>Restart the inverter to see if the fault still exists. If it still exists, contact service.</li> </ol>                                                                                                           |  |
| 110005 | battery_stops_<br>running_alarm | <ol> <li>If the battery is not connected, use a multimeter to measure whether there is voltage at the battery terminal.</li> <li>Restart the inverter to see if the fault still exists. If it still exists, contact service.</li> </ol>                                                                             |  |
| 110006 | over_temperature_alarm          | <ol> <li>Try to lower the ambient temperature.</li> <li>Make sure that the inverter is installed according to the manual and there is no shelter around the machine.</li> <li>After the inverter is powered off and waiting for 30 minutes, then restart it. If the fault still exists, contact service.</li> </ol> |  |



### 10.2.2 Battery Protection Description

| LED Indictor                           | Protection Code | LED Display | Description               | Troubleshooting                                                                                     |
|----------------------------------------|-----------------|-------------|---------------------------|-----------------------------------------------------------------------------------------------------|
|                                        | 1               | 000         | Temperature<br>difference | Wait for automated recovery. In case the problem is not recovery for a long time, call for service. |
|                                        | 3               |             | High temperature          | Stop discharging and charging until this code is eliminated and wait for the temperature to drop.   |
| Yellow LEDs<br>flash once<br>every 1S. | 4               |             | Low-temperature discharge | Stop discharging until this code is eliminated and wait for the temperature to rise.                |
|                                        | 5               |             | Over-current charge       | Wait for automated recovery.                                                                        |
|                                        | 6               |             | Over-current<br>discharge | If the problem is not recovery for a long time, call for                                            |
|                                        | 8               |             | Cell overvoltage          | service.                                                                                            |
|                                        | 9               |             | Cell under voltage        | Stop discharging and call service immediately.                                                      |
|                                        | 11              |             | Low-temperature charge    | Stop discharging until this code is eliminated and wait for the temperature to rise.                |



### 10.2.3 Battery Error Description

| LED Indictor                     | Error Code | LED dis-<br>play | Description                   | Troubleshooting                                                                |
|----------------------------------|------------|------------------|-------------------------------|--------------------------------------------------------------------------------|
|                                  | Error 01   |                  | Hardware error                |                                                                                |
|                                  | Error 02   |                  | Hardware error                | Wait for automated recovery. If the problem is not resolved, call for service. |
|                                  | Error 03   |                  | Hardware error                |                                                                                |
|                                  | Error 05   |                  | Hardware error                |                                                                                |
|                                  | Error 06   |                  | Circuit breaker open          | Switch on circuit breaker after powering off the battery.                      |
|                                  | Error 08   |                  | LMU disconnect (slave)        | Reconnect the BMS communication cable.                                         |
| Red LEDs flash<br>once every 1S. | Error 09   | •00              | SN missing                    | Call for service.                                                              |
|                                  | Error 10   |                  | LMU disconnect (master)       | Reconnect the BMS communication cable.                                         |
|                                  | Error 11   |                  | Software version inconsistent | Call for service.                                                              |
|                                  | Error 12   | 100              | Multi master                  | Restart all batteries.                                                         |
|                                  | Error 13   |                  | MOS<br>overtemperature        | Power off the battery and power on the battery after 30 minutes.               |
|                                  | Error 14   | 100              | Insulation fault              | Restart battery and in case the problem is not resolved, call for service.     |
|                                  | Error 15   |                  | Total voltage fault           | Restart battery and in case the problem is not resolved, call for service.     |

## (I) NOTE:

In the case of work mode, if the protection code 09 appears, please press the power button 5 times within 10 seconds, the BMS will be forced to turn on the MOSFET of discharge so that the inverter can detect the battery open voltage and charge the battery.

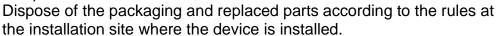


### 11. Uninstallation & Return

### 11.1 Removing the Product

#### **Procedure**

- **Step 1** Power off the product by following instructions in chapter 9.3 Powering Off the Product.
- **Step 2** Disconnect all cables from the product, including communication cables, PV power cables, battery power cables, AC cables, and PE cables.
- **Step 3** Remove the WiFi module from the inverter.
- **Step 4** Remove the inverter from the wall bracket. Remove the battery pack from the wall bracket.
- **Step 5** Remove the mounting bracket.


### 11.2 Packing the Product

If the original packaging is available, put the battery pack or inverter inside it and then seal it using adhesive tape.

If the original packaging is not available, put the battery pack or inverter inside a suitable cardboard box and seal it properly.

### 11.3 Disposing of the Product

If the battery pack or inverter service life expires, dispose of it according to the local disposal rules for electrical equipment and electronic component waste.



Do not dispose the inverter and the battery pack with normal domestic waste.





# 12. Specification

# 12.1 Datasheet of Hybrid Inverter SMILE-S6-HV-INV

| Item                                | SMILE-S6-HV-INV (OUT-DOOR) | SMILE-S6-HV-INV (IN-<br>DOOR) |  |  |
|-------------------------------------|----------------------------|-------------------------------|--|--|
| Input DC (PV side)                  |                            |                               |  |  |
| Recommended Max. PV Power           | 9000 W                     | 7500 W                        |  |  |
| Max. PV Input Voltage               | 580 V                      |                               |  |  |
| Rated Voltage                       | 360 V                      |                               |  |  |
| Start-Up Voltage                    | 100 V                      |                               |  |  |
| MPPT Voltage Range                  | 100 ~                      | - 550 V                       |  |  |
| Max. Input Current Per MPPT         | 15 A                       | 15 A / 15 A                   |  |  |
| Max. Short Circuit Current Per MPPT | 22.5 A                     | 5 A /22.5 A                   |  |  |
| MPPT Number                         |                            | 2                             |  |  |
| Max Input Strings Number Per MPPT   | 1                          |                               |  |  |
| Battery                             | 1                          |                               |  |  |
| Battery Type                        | Li-ion                     |                               |  |  |
| Battery Voltage Range               | 100 ~ 400 V                |                               |  |  |
| Maximum Charging Power              | 6 kW                       | 5 kW                          |  |  |
| Maximum Charge/Discharge Current    | 40 A / 40 A                |                               |  |  |
| Communication                       | CAN                        |                               |  |  |
| Output AC (Back-up)                 | 1                          |                               |  |  |
| Rated Output Power                  | 6 kW                       | 4.6 kW                        |  |  |
| Max. Apparent Output Power          | 6 kVA                      | 4.6 kVA                       |  |  |
| Back-Up Switch Time                 | <10 ms                     |                               |  |  |
| Rated Output Voltage                | L/N/PE, 230 V              |                               |  |  |
| Rated Frequency                     | 50/60 Hz                   |                               |  |  |
| Rated Output Current                | 26.1 A                     | 21.7 A                        |  |  |
| THDv(@linear load)                  | 3%                         |                               |  |  |
| Input AC (Grid side)                |                            |                               |  |  |
| Rated Input Voltage                 | L/N/PE, 230 V              |                               |  |  |
| Rated Frequency                     | 50/60 Hz                   |                               |  |  |
| Rated Input Power                   | 12 kW 9.2 kW               |                               |  |  |



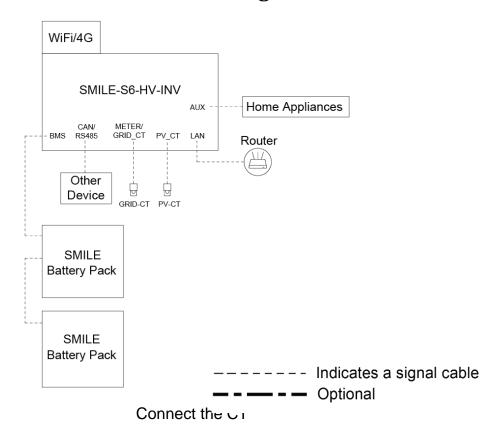
| Max. Input Current               | 52.2 A                            | 40 A       |  |
|----------------------------------|-----------------------------------|------------|--|
| Output AC(Grid Side)             |                                   |            |  |
| Rated Output Power               | 6 kW                              | 4.6 kW     |  |
| Max. Apparent Output Power       | 6 kVA                             | 4.6 kVA    |  |
| Operation Phase                  | Single phase                      |            |  |
| Rated Grid Voltage               | L/N/PE, 230 V                     |            |  |
| Grid Voltage Range               | 180 ~ 270 V                       |            |  |
| Rated Grid Frequency             | 50 / 60 Hz                        |            |  |
| Rating Grid Output Current       | 26.1 A 20 A                       |            |  |
| Power Factor                     | >0.99 (0.8 leading - 0.8 lagging) |            |  |
| Thdi                             | < 5                               | 3%         |  |
| Protection Class                 | I                                 |            |  |
| Overvoltage Category             | III                               |            |  |
| Efficiency                       |                                   |            |  |
| Max Efficiency                   | >97%                              |            |  |
| EU Efficiency                    | >96                               | 5.2%       |  |
| Protection                       |                                   |            |  |
| Anti-Islanding Protection        | Integrated                        |            |  |
| Insulation Resistor Detection    | Integrated                        |            |  |
| Residual Current Monitoring Unit | Integrated                        |            |  |
| Output Over Current Protection   | Integrated                        |            |  |
| Output Short Protection          | Integrated                        |            |  |
| Output Overvoltage Protection    | Integrated                        |            |  |
| DC Reverse Polarity Protection   | Integrated                        |            |  |
| PV Overvoltage Protection        | Integ                             | Integrated |  |
| Battery Reverse Protection       | Integrated                        |            |  |
| PV Switch                        | Integrated                        |            |  |
| Battery Breaker                  | Integrated                        |            |  |
| General data                     |                                   |            |  |
| Dimensions (W*H*D)               | 580*440*230 mm                    |            |  |
| Weight                           | 25 kg                             |            |  |
| Topology                         | Transformerless                   |            |  |
| Operation Temperature Range      | -25 ~ +60 °C                      |            |  |
| Ingress Protection               | IP65                              | IP21       |  |
| Noise Emission                   | <30 dB(A) @1m                     |            |  |
| Cooling Concept                  | Natural convection                |            |  |

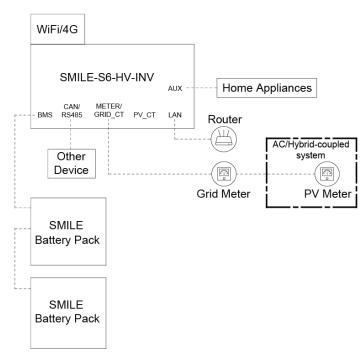
\_\_\_\_\_



| Max. Operation Altitude  | 3000 m                                                                                                                               |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
| Grid Connection Standard | G98/G99, VDE-AR-N 4105, EN 50549-1,VDE 0126, RD 1699, CEI 0-21, C10/11, NRS 097-2-1, Tor Erzeuger, MEA, PEA, AS/NZW 4777.2, IEEE1547 |  |
| Safety/EMC Standard      | IEC62040-1, IEC62109-1/-2.AS3100,<br>NB/T 32004, EN61000-6-2, EN61000-6-3                                                            |  |
| Features                 |                                                                                                                                      |  |
| DC Connection            | Amphenol H4 connectors                                                                                                               |  |
| AC Connection            | Terminal block                                                                                                                       |  |
| BAT Connection           | Vaconn D4 connectors                                                                                                                 |  |
| Communication            | LAN, WiFi (optional)                                                                                                                 |  |
| Warranty                 | 5 years standard                                                                                                                     |  |

## 12.2 Datasheet of Battery Pack SMILE-BAT-8.2PH


| Item                               | SMILE-BAT-8.2PH<br>(OUTDOOR)                                              | SMILE-BAT-8.2PH<br>(INDOOR) |  |
|------------------------------------|---------------------------------------------------------------------------|-----------------------------|--|
| Battery Type                       | LFP (LiFePO4)                                                             |                             |  |
| Weight                             | 88 kg                                                                     | 72 kg                       |  |
| Dimension (W*H*D)                  | 580*820*213 mm                                                            | 580*730*200 mm              |  |
| Ingress Protection                 | IP65                                                                      | IP21                        |  |
| Warranty                           | 5 Year Product Warranty,<br>10 Year Performance Warranty                  |                             |  |
| Energy Capacity                    | 8.2 kWh                                                                   |                             |  |
| Usable Capacity                    | 7.8 kWh                                                                   |                             |  |
| Depth of Discharge (DoD)           | 95%                                                                       |                             |  |
| Nominal Voltage                    | 256 V                                                                     |                             |  |
| Operating Voltage Range            | 240 ~ 288 V                                                               |                             |  |
| Internal Resistance                | ≤90 mΩ                                                                    |                             |  |
| Max. Charging/Discharging Current* | 1.2C (38.4 A)                                                             | 1C (32 A)                   |  |
| Operating Temperature Range        | Charge: 0 <t<50°c -10<t<50°c<="" discharge:="" td=""></t<50°c>            |                             |  |
| Relative Humidity                  | 0% ~ 95%                                                                  | 15% ~ 85%                   |  |
| Monitoring Parameters              | System voltage, current, cell voltage, cell temperature, PCBA temperature |                             |  |
| Communication                      | CAN and RS485 compatible                                                  |                             |  |
| Safety                             | IEC62619(Cell), IEC 62619(Pack)                                           |                             |  |
| Transportation                     | UN38.3                                                                    |                             |  |


<sup>\*</sup> Max. charge/discharge current derating will occur related to temperature and SOC.



## **Appendix**

## **A1. Communication Connection Figure**





Connect the meter



# **A2. Safety Country Code**

|    | Safety Code  | Country      | Remarks              |
|----|--------------|--------------|----------------------|
| 1  | VDE0126      | France       |                      |
| 2  | VDE4105      | Germany      |                      |
| 3  | AS4777.2     | Australia    | Regional standards   |
| 4  | C10/C11      | Belgium      |                      |
| 5  | TOR Erzeuger | Austria      |                      |
| 6  | CEI 0-21     | Italy        |                      |
| 7  | NRS 097-2-1  | South Africa |                      |
| 8  | G98/G99      | Britain      |                      |
| 9  | 50Hz default | 50Hz grid    | For 50Hz grid region |
| 10 | G98/G99-IE   | Ireland      |                      |
| 11 | EN50549      | EU           |                      |
| 12 | NC Rfg       | Poland       |                      |



## A3. Regional application Standard

| Regional application Standard | Electric Company   |  |
|-------------------------------|--------------------|--|
| Australia A                   | N/A                |  |
| Australia B                   | N/A                |  |
| Australia C                   | N/A                |  |
| New Zealand                   | N/A                |  |
|                               | Ausnet Services    |  |
|                               | Jemena             |  |
| Victoria                      | Citipower          |  |
|                               | Powercor           |  |
|                               | United Energy      |  |
| Queensland                    | Energex            |  |
| Queensiand                    | Ergon Energy       |  |
| South Australia               | SA Power           |  |
| South Australia               | Networks           |  |
|                               | Ausgrid            |  |
| New South Wales               | Endeavour Energy   |  |
|                               | Essential Energy   |  |
| Western Australia             | Horizon Power      |  |
| western Australia             | Western Power      |  |
| Australian Capital Territory  | Evoenergy          |  |
| Northern Territory            | NT Power and Water |  |
| Tasmania                      | Tas Networks       |  |

 Choose the correspond Regional application Standard, the power quality modes Volt-var and Volt-Watt will running automatically. (Only for Australia)

### **NOTICE**

- If the extra PV inverter is not used, the system is suitable for DC mode.
- If you have the extra PV inverter, the system is suitable for AC or Hybrid mode.